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On the Uniform Convergence of Gaussian 
Quadrature Rules for Cauchy Principal 
Value Integrals and Their Derivatives 

By N. I. loakimidis 

Abstract. The convergence of the aforementioned quadrature rules for integrands possessing 
H6lder-continuous derivatives of an appropriate order is proved to be uniform and not only 
pointwise. The rate of convergence is also established and an application to the numerical 
solution of singular integral equations is made. 

1. Introduction. In a recent short communication [8] we considered the conver- 
gence of Gaussian quadrature rules for the numerical evaluation of derivatives of 
Cauchy principal value integrals of the form 

J(P) dfb( f (t) d 
(1) I()(x) dx a P t - x 

=p!bw(t) f (t) dt a < x < b,p=,2. 

(For p = 0, I(?)(x) denotes simply an ordinary Cauchy principal value integral.) The 
last integral in (1) should be interpreted as a finite-part integral [15]. Yet, instead of 
using the complicated definition of such an integral proposed by Hadamard, we 
prefer to define it here, equivalently, by (1) as a derivative of a Cauchy principal 
value integral. This is a common practice. 

For the construction of the aforementioned rules, we rewrite (1) as 

(2) I(P)(x) = p!f (b )Wp? [1(t) - k kO (t x)] dt 

P f (k) 
(x7 

b w(t) 

+ p ! ! Z k _ X)P-k+ dt a < x < b, 
k=O a( )-? 

assuming that f E CP+l[a, b] and that w(t) is a nonnegative generalized Holder- 
continuous function on [a, b] (that is, a function which is Holder-continuous on 
every closed subinterval of [a, b] not containing the endpoints a and b and near 
these endpoints may have integrable algebraic or algebraicologarithmic singularities 
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[17]). Then the first integral in (2) can be evaluated by the classical Gaussian 
quadrature rule [1] 

b n 
(3) | w(t)h(t) dt = E 1i,nh(ti,n) dt + En(f) 

ai= 

for the weight function w(t) on [a, b] (where ti,n are the nodes, Aui n the weights, 
in > 0, and En the error term) and the resulting quadrature rule for I(p)(x) is 

called the Gaussian quadrature rule for I(p)(x). By defining the polynomial 
n 

(4a) pn(X) = H (x t-,n) 
i=l 

and the corresponding function of the second kind 

(4b) qn(x) = t(t) t x dt, a < x < b, 

(where, for the sake of generality, we have used the symbol ? instead of f), we have 
for the integrals in the sum in the right side of (2) 

(5) ~ ~ wt) dt = 1 
(P-)(x) a < x < b. 

(t - X)P-k+l ( - k)! q 

We can also consider the cases where x = a or x = b. In these cases, we define 
I(P)(x) directly from (2), defining the last integrals in it (which are not regular 
integrals) in some appropriate sense (e.g., the finite-part sense [15]) or, more 
generally, as 

(a b W(t) fb w(t) d= 
(6a) + mt=Am tb dt = Bm m = 1,525,....5 

where Am and Bm are appropriately or arbitrarily selected constants. Then (taking 
into account (5)), we rewrite (6a) equivalently by defining the quantities q(p-k)(a) 

and q(fp-k)(b) by 

(6b) q(fp-k)(a) = (p - k)!APqk?, q-(k)(b) = (p - k)!Bp-k+l 

(These quantities should not be understood as (p - k)th derivatives of qo(x) at 
x = a, b; qo(x) is generally not differentiable at these points.) In this way, (5) holds 
true also for x = a, b. The same happens for (2), which we take as the definition of 
I(p)(x) in (1) for these special values of x. As will become clear below, the values of 
Am and Bm have no influence on the quadrature error and the convergence results, 
simply because just the first integral in the right side of (2) is approximated by using 
the quadrature rule (3); but this integral is simply a regular integral. Finally, again 
for x = a, b, q P)(x) are defined by (2) with f(t) pn(t) and (6a) taken into 
consideration. (Of course, (4b) also holds true for x = a, b.) 

Now, by using (3) and (5), we obtain from (2) the following explicit form for the 
Gaussian quadrature rule for I(P)(x): 

(7) I(P) P E ( _(x) 
= 

[f(ti,n) E k! -(tin 
i=1 (tl,n X-P L k=f 

+ ( (qp-k)(X)f (k)(X) +E(;x 
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(En denoting again the error term). Of course, for x = tj,n (j = 1(1)n) thejth term 
of the quadrature sum in (7) is equal to 

j, n f(p+ 1)( tj,)/( p + 1). The quadrature 
rule (7) was also derived in [8] by a different approach. For x # tj, n an equivalent 
form of (7) is [8] 

n 

(8)I ()=!=E (ti n f(tn) + E (= P) K(P - k)(P x )Xf (k)(X) 
i=1 tin- XP k= 

+En(f; x), Kn(X) = qn(x)/pn(x), x # ti,n,j = I(I)n. 

It can also be mentioned that the corresponding forms of (7) for x = tj1n are 
complicated, but easy to derive from (7) (or even (8)) by a limiting procedure. We 
confine ourselves to presenting them only for p = 0 [11] (see also [16]) and p = 1 
[101* 

(9) I(0 )(tj,n) f E (ti,n) 
i=n1 i,n j,n 
ioj 

+ q'[(tjn) - l, n Pn ( tj, nf (tj n 

+ j, n'f'(tjn) + En(f; tj,n), 

(10) I2(t)i(t) 2 2 p (t. )+ 1 

(q (tin)po'(t ) + 9(niPn)(t)j,jn() i) 

X qn ( tj,,n) Pn ( tj, n )+n(tjn)Pn.. ( tj, n f(tn) 

+ -qn ( "p~(tj1,) + q2tj,nPn(tjin) (tjin)If(i) 

+ [qn ( tj, n ) Pn" (tj,,n) + 2q ( tj,,n)Pn ( tj,n )] f ( tj ,n)) 

2 -ij,n f"( tj,,n) + En (f; tj, n) . 
The quadrature rule (7) (or, almost equivalently, (8)) is a generalization of the 

corresponding rule for ordinary Cauchy principal value integrals (p = 0). The 
Gauss-Legendre quadrature rule for this class of integrals was suggested in [6]. The 
general Gaussian quadrature rule for the same class of integrals was obtained in [7], 
[11]. Convergence results in the same case (p = 0) were proved in [2], [5], [9]. The 
most important of these results is that by Elliott and Paget [5], who proved that in 
this case if f E C1[a, b], then the Gaussian quadrature rule for I(?)(x) (a special case 
of (7)) converges (see also [16]). A stronger result in [22] for the special case of the 
Gauss-Jacobi quadrature rule appears to be incorrect. For p = 1, the corresponding 
special case of (8) (derived originally in [8]) was obtained in [18] (but its convergence 
was considered only for analytic integrands f(t)) and, by different approaches, in 
[10]. A special case of this rule (for p = 1) was originally derived in [121. 

*There is an error in the formula in [10]. The corrected formula was supplied by the referee. 
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It seems that, up to now, nowhere was the uniform (as opposed to pointwise) 
convergence of Gaussian quadrature rules for the numerical evaluation of (1) 
considered, even in the special cases p = 0 and p = 1. This will be done here on the 
basis of a classical theorem of convergence theory and the results of this section and 
[8]. Such a convergence is useful (particularly, for p = 0 and p = 1) in the numerical 
solution of singular integral equations appearing in several branches of physics and 
engineering. 

It should be mentioned that the above Gaussian quadrature rules ((7) to (10)) 
should not be confused with the interpolatory quadrature rules based on Gaussian 
nodes (and sometimes called Gaussian rules too) suggested in [14], [19] for p = 0. 
The convergence of the latter class of quadrature rules for p = 0 was studied in 
detail both for pointwise [3]-[5], [9], [16], [21] and for uniform [14], [20], [21] 
convergence. From these results it follows that in certain interpolatory quadrature 
rules based on Gaussian nodes for the numerical evaluation of I(?)(x) for particular 
weight functions w(t) uniform convergence does not hold (see, e.g., [21]). 

Finally, for x = a and x = b, I (P)(x) was defined by (2) (together with (6)) and, 
clearly, the corresponding Gaussian quadrature rule (7) remains valid. The present 
results for uniform convergence hold true along the whole interval [a, b]. Obviously, 
this does not mean that limX CI(P)(x) exists or is equal to I(p)(c), c = a, b, in 
general (but the integrals in the sum on the right side of (2) have evidently no 
influence on the error term En). 

2. Proof of Convergence. By taking into account the previous results, we see 
directly that the error En made when approximating (1) by the corresponding 
Gaussian quadrature rule (7) is equal to the error made when approximating the 
regular integral 

(11) J(P)(x) = Jbw(t)g(P)(t, x) dt, w(t) > 0 for a < t < b, 
a 

by the analogous quadrature rule for regular integrals, where [8] 

____P f (k)(X) (t _ X)k] 

(12) g(P)(t, x) = 

1(+)(x) tX 

We assume that f (q)(x) is a Holder-continuous function with index X, 0 < X < 1, 
(f (q) E Hx) with q > p + 1. Then, on the basis of a well-known theorem in 
approximation theory due to Gel'fond (see, e.g., [13]), there exists a sequence of 
polynomials sn(X) of degree not higher than n such that 

(13) IrClk)(x)I < 5lkqA k = 0(l)q, a < x < b, 

where 

(14) rn(x) = f(x) - Sn(X) 

and C1 denotes a positive constant. 
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We wish to evaluate the error En when approximating (1), or equivalently (11), by 
using the appropriate Gaussian quadrature rule. Clearly, this error remains un- 
changed if we apply the same rule to the evaluation of the integral 

(15) K(p)(x) = jbW(t)[g(P)(t, x) - h(P)(t, x)] dt, 

with h P)(t, x) defined by a formula analogous to (12) with f(x) replaced by sn(X) 
the polynomial of best uniform approximation to f(x) and its first q derivatives, 
(13). This is so because, obviously, h(P)(t, x) is a polynomial of degree n - p - 1 (if 
n > p + 1) or 0 (if n < p + 1) and for such a polynomial the Gaussian quadrature 
rule with n nodes is exact. 

Now we take into account that 

(16) g(P)(t, x) - hP)(t, x) 

- (t rx)P? [r - 
rn) X (t -x)k], t =A 

1t _ 
PlX)pl_nt 

k 
t==, 

p+l t t= x 

as is quite clear. Furthermore, since rn( E HA because the same was assumed for 
f(x) and sn(x) is a polynomial, we conclude that 

p r+l)( 5 E- (t, x), t =A x, 

(17) gp)(Nt, x) - h(P)(t, x) = r(p+1)(x) 

p p+l , t=x. 

Next, we use (13) with k = p + 1 and we find 

(18) 1g(P)(t, x) - hP)(t, x)l < -l np+l-q-X q > p + 1. 

Finally, by applying the Gaussian quadrature rule to K(p)(x), (15), and taking into 
account the previous developments, as well as the fact that 

(19) f (t) dt E i,n 
a i=l 

for the sum of the weights of this rule, we conclude directly that 

(20) EEnj < C2nP+l -q-A q >p + 

where C2 is a positive constant defined by 

(21) C2 = C bw(t) dt. 

These results prove the uniform convergence of the Gaussian quadrature rule 
considered in [8] (and rederived by an alternative procedure here) and establish the 
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corresponding rate of convergence. They can be stated in the form of the following 
theorem: 

THEOREM. The n-point Gaussian quadrature rule for the numerical evaluation of 
Cauchy principal value integrals and their pth derivatives with a nonnegative gener- 
alized Hiolder-continuous weight function along a finite integation interval converges 
uniformly in the closed integration interval for n -x o for integrands f such that 
f (q) e HA (q > p + 1), and the rate of convergence is 0(nP?lq-,X). 

Concluding, we make three remarks: (i) As already mentioned in the introduction, 
a Cauchy principal value integral should be interpreted as a finite-part integral at the 
endpoints a and b of the integration interval. (ii) Since Gaussian quadrature rules for 
Cauchy principal value integrals are exact for polynomials of degree up to 2n [5]-[7], 
[11], we could have used the sequence of polynomials S2n(X) instead of the sequence 
of polynomials sn(x) in the previous developments; yet, the rate of convergence, 
(20), would not change although the values of the positive constants C1 and C2 in 
(13) and (21), respectively, would change. (iii) The previous results hold also for the 
Radau- and Lobatto-type Gaussian quadrature rules and, more generally, for 
convergent interpolatory quadrature rules for regular integrals when these rules are 
modified to apply to Cauchy principal value integrals and their derivatives [7], [8], 
[11]. Of course, in such a case we cannot use the sequence of polynomials S2n(x) in 
place of the sequence of polynomials s(x), although we may be able to use another 
appropriate sequence of polynomials Sm(X) with n < m < 2n, the value of m 
depending on the accuracy of the quadrature rule (e.g., m = 2n - 1 for Radau-type 
rules and m = 2n - 2 for Lobatto-type rules). 

3. An Application. As an application, we consider the classical collocation method 
1gfr- rte-numenical- solution- of the dminant- Cauchy-tympe singAlar integral equatiomof 
the first kind of the form 

(22) Xf( _ t()1/2 f(t) dt = g(x), -1 < x < 1. 

By applying the Gauss-Chebyshev method to the numerical solution of this equa- 
tion, we obtain the following equations: 

i 
n 

f (t.,) 1 
(23) - + -En(f; xk,n) = g(xk,n), k = 1(1)(n - 1), n 1= t, 

- Xk,n I 

where the nodes ti,n and the collocation points Xk,n are the roots of the Chebyshev 
polynomials of the first kind T1(x) and of the second kind Ub->(x), respectively. We 
are interested in the error term En (depending both on the integrand f and on the 
node xk,n used). This application was also considered by Elliott [2]. 

By taking into account the theorem proved in the previous section, we conclude 
that if f possesses a Holder-continuous first derivative (f' E HA), the quadrature 
rule used in (22) converges uniformly (for all xk,n) as n - oo, that is, 

(24) jEn(f; Xk,n)l < C3nx k = l(l)(n - 1), 

(C3 being a positive constant). It seems that this result cannot be improved. 
Nevertheless, Elliott proved in [2] a stronger convergence result, where the condition 
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f HA was replaced by the weaker conditionf e H.. The proof given in [2] has not 
been quite clear to the author, but the fact that Elliott dealt only with pointwise 
convergence and not with uniform convergence (as is the case here) may be the 
reason for the discrepancy between the results of Elliott and the present ones. 

Here, we will establish a bound analogous to (24) by a second method, indepen- 
dent of the present results and based on the results of Sheshko [21], who proved that 
the error En( f; xk,fn) for the interpolatory quadrature rule based on the nodes ti,n 
(coinciding with the corresponding Gaussian quadrature rule for the collocation 
points xk,n and only for these points) is bounded by 

(25) IEn(f; xk,n)I < - Xk )2 n Xlog n, k = l(l)(n - 1), 

forf E H., whence 

(26) IEn(f; Xkf)I S c4(i - x )1)/ n n(X?+)logn, k = l(l)(n - 1), 

for f' E HA (C4 denoting again a positive constant). Now we take into account the 
explicit formulae for the collocation points Xk n (roots of U- 1(x)) 

(27) Xk,n = cos(ksr/n), k = l(l)(n - 1). 

Then 

(28) (1 -X 
2 

)1/ = l/sin(k7T/n), k = l(l)(n - 1). 

Therefore, for n - oo, we obtain from (26) 

(29) IEn(f; Xk,n)l < C5n-logn < C6n-(-), k = l(l)(n -1), 

(C5,6 being appropriate positive constants and e an arbitrarily small positive quan- 
tity). This result almost coincides with (24) (although obtained by quite a different 
method). 
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